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Introduction

Beyond the Selberg class

The basic results
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Dirichlet series

One wishes to understand the behaviour of some numbers a,
(n=1,2,3...) that arise naturally in some context in number
theory, analysis or geometry.

Idea: Form a series D(s) = >~ ; 2 of one complex variable. The
nice properties of the series should be reflected in the nice

properties of the (holomorphic) function D(s) and vice-versa.

Main advantage: We can use the tools that complex analysis gives
us to analyse the sequence aj.

Most basic example: 1) ¢(s) = >, 2

n=1 ns-

Other examples: 2) L(s,x) = o4 X,Sf), where x is a (primitive)
Dirichlet character, and

3) L(s,f) =3 721 22, where f is a modular or Maass form.

All of these are examples of what are known as unitary
automorphic L-functions.
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Abstracting out the analytic properties

Let F(s) be a nonzero meromorphic function on C.

(P1) For Re(s) > 1, F(s) is given by an absolutely convergent
Dirichlet series > 7>, 22.

(P2) There exists an integer m > 0 such that (s — 1)™F(s) extends
to an entire function of finite order.

(P3) There exist a real number @ > 0, a complex number w such
that |w| =1, and a function G(s) of the form

s) = [T r(ys + ). (1)
j=1
where \; > 0 and pu; € C, such that
P(s) := Q°G(s)F(s) = wd(1 —5). (2)

(P4) The function F(s) can be expressed as a product

b
F(s) = 1, Fo(s), where log Fp(s) = 3°32; % with
|bk| < Cp*? for some 6 < 1/2 and some constant C > 0.
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Examples

1) ¢(s) converges in the half-plane Re(s) > 1 [(P1)]. It is known
that (s — 1)((s) is entire[(P2) with m = 0] and that it satisfies the
functional equation

Z(s) =752 (s/2)¢(s) = Z(1 — s)

[(P3) with G(s) =T(s/2)]. Further, (P4) is satisfied withb, =1
and by« =0 for k > 1.

Let A denote the Ramanujan cusp form of weight 12. More
explicitly, we recall that the 7-function is defined by

> r(n)g"=q [ -q™*.
n=1 m=1

The series L(s,A) =37, % satisfies (P1), (P2) (with
m = 0), (P3) with G(s) =T (s+ 11/2) and also (P4)



The Selberg and extended Selberg classes

Selberg originally defined the class S as the class of series
satisfying (P1)-(P4) with p; > 0 forall 1 <j <r.



The Selberg and extended Selberg classes

Selberg originally defined the class S as the class of series
satisfying (P1)-(P4) with p; > 0 forall 1 <j <r.

His idea was to provide a purely analytic framework for many
questions in number theory arising from the Langlands programme.
He formulated conjectures for S which (have been shown to) imply
the famous Artin conjecture for L-series as well as some of
Langlands’ conjectures (e.g., on solvable base change)



The Selberg and extended Selberg classes

Selberg originally defined the class S as the class of series
satisfying (P1)-(P4) with p; > 0 forall 1 <j <r.

His idea was to provide a purely analytic framework for many
questions in number theory arising from the Langlands programme.
He formulated conjectures for S which (have been shown to) imply
the famous Artin conjecture for L-series as well as some of
Langlands’ conjectures (e.g., on solvable base change)

Kaczorowski and Perelli defined S# as the class of series satisfying
(P1)-(P3) with p; > 0 for all 1 < j < r, and have proved a number
of important theorems.



The Selberg and extended Selberg classes

Selberg originally defined the class S as the class of series
satisfying (P1)-(P4) with p; > 0 forall 1 <j <r.

His idea was to provide a purely analytic framework for many
questions in number theory arising from the Langlands programme.
He formulated conjectures for S which (have been shown to) imply
the famous Artin conjecture for L-series as well as some of
Langlands’ conjectures (e.g., on solvable base change)

Kaczorowski and Perelli defined S# as the class of series satisfying
(P1)-(P3) with p; > 0 for all 1 < j < r, and have proved a number
of important theorems.

Problem: Very few unitary automorphic L-functions are known to
satisfy the condition with i; > 0. Showing this, is equivalent to
showing the Generalised Ramanujan Conjectures at infinity.
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We define two larger classes:
Let G# be satisfying (P1)-(P3) with p;/)\; > —1/2 for all
1 <j <r, and G to be the class of series in G satsifying (P4).
Advantage: All generic unitary automorphic L-functions (of GL,)
are known to be in G. Moreover, the 1/2 that appears above is the

analogue of the 1/2 that appears in (P4). This is the
Jacquet-Shalika bound.

We define L# to be the class of series satisfying (P1)-(P3) and £
to be the class of series in £# satisfying (P4) (no condition on the
1)

Advantage: All unitary automorphic L-functions lie in L.

Thus any theorem proved in £L# (resp. G#) is valid for all (resp.
all generic) unitary automorphic L-functions.

More: The theorems will also be valid for series that arise as
factors of unitary automorphic L-functons.
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The degree of an element in £*
Basic Question: Can the (many) interesting results already proved
for the classes S and S# be proved for £ and £#.

Basic Answer: Yes, many of them (perhaps all of them).

For F € L#, define the degree dp = 237;_; A;. Notice that F(s)
could satisfy more than one functional equation. Nevertheless, we
have

Proposition
The degree dr is well defined.

In G# we can do better.

Theorem

If F(s) lies in G# and satisfies two different functional equations
for factors Gi(s) and Gy(s), then Gi(s) = cGa(s) for some ¢ € C.
The proofs of the above statements are variations on the
arguments made in S and S* by Conrey-Ghosh (C-G) and
Kaczorowski-Perelli (K-P)
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We first state the degree conjecture:

Conjecture
For any F € L#, dF € ZL>q.

We remark that E# = Sf. Thus by a theorem of K-P for S, we
have

Theorem
The only elements of L’# are Dirichlet polynomials, i.e., series of
the form 3_, 4 5% Further, Lo = {1}.

We also have

Theorem
IFOo<d<1, LH =0

The proof of the theorem above, is an easy modification of
arguments of Richert and C-G made for S.



Factorisation

Notice that the class £# forms a monoid under multiplication of
series. An element F in £7 is said to be primitive if F = F1F5 in
L# implies that either F; or F> is a unit.



Factorisation

Notice that the class £# forms a monoid under multiplication of
series. An element F in £7 is said to be primitive if F = F1F5 in
L# implies that either F; or F> is a unit.

An easy consequence of the previous theorems (notice that
dF1F2 = dFl + dFZ) is

Theorem
Every element in L¥ factors into a product of primitive elements.



Factorisation

Notice that the class £# forms a monoid under multiplication of
series. An element F in £7 is said to be primitive if F = F1F5 in
L# implies that either F; or F> is a unit.

An easy consequence of the previous theorems (notice that
dF1F2 = dFl + dFZ) is

Theorem
Every element in L¥ factors into a product of primitive elements.

Conjecture

(Selberg) Unique factorization into primitives holds in the class S.



Factorisation

Notice that the class £# forms a monoid under multiplication of
series. An element F in £7 is said to be primitive if F = F1F5 in
L# implies that either F; or F> is a unit.

An easy consequence of the previous theorems (notice that
dF1F2 = dFl + dFZ) is

Theorem
Every element in L¥ factors into a product of primitive elements.

Conjecture
(Selberg) Unique factorization into primitives holds in the class S.

Of course, one can conjecture the same for the class L.
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The case dp =1

Theorem

Let F be in L7 and dp = 1. Then (upto factors of degree 0), F(s)
is a linear combination of L-functions of the form L(s + it, x).
This theorem was proved by K-P for S# (Acta Mathematica,
1999). Soundararajan gave a very short and elementary proof in

2005. | am able to modify Soundararajan’s proof to get the result
for L#.

Let L(s,7) be the L-function associated to a modular or Maass
cuspidal eigenform (e.g. L(s,A)). (fancier terminology: let 7 be a
cuspidal automorphic reprentation of GLy/Q)

Corollary
The function L(s, ) is primitive in L.
Again, the above result has been known for & by the work of

(K-P). But all the functions L(s, ) are not known to lie in S.
They are known to lie in £ though!
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Thecase 1 < drp < 2

This is much harder and more interesting. It is joint work with R.
Balasubramanian.

Using a technique of Soundarajan we have been able to make some
progress. For instance, we can extend the results of K-P from S#
to L£# to obtain

Theorem
With the previous notation, we have for any F € L#,

Z |an|? ~ cT

n<T

for some constant c.

The proof here involves a much more serious departure from
existing arguments. In particular we need to use the celebrated
results of Montgomery and Montgomery-Vaughan on L? norms.
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Coda

Using the theorem above and arguments similar to those of K-P,
we can prove

Theorem

If1<d<5/3, Lh =0.

We should remark that our method allows for a considerable
shortening of the difficult proof of the same result of K-P in S#
(Inventiones, 2002). However, they have gone further and proved
(Annals, 2012)

Theorem
Ifl<d<2 8=

We believe that our techniques should be good enough to 1)
extend their results to £# and 2) yield a much shorter and
different proof.

This is work in progress.
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