On the Large Selberg Class

Ravi Raghunathan

Indian Institute of Technology Bombay

IIT Bombay Diamond Jubilee Conference January 05, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

Beyond the Selberg class

The basic results

One wishes to understand the behaviour of some numbers a_n (n = 1, 2, 3...) that arise naturally in some context in number theory, analysis or geometry.

One wishes to understand the behaviour of some numbers a_n (n = 1, 2, 3...) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function D(s) and vice-versa.

One wishes to understand the behaviour of some numbers a_n (n = 1, 2, 3...) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function D(s) and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_n .

One wishes to understand the behaviour of some numbers a_n (n = 1, 2, 3...) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function D(s) and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_n .

Most basic example: 1) $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.

One wishes to understand the behaviour of some numbers a_n (n = 1, 2, 3...) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function D(s) and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_n .

Most basic example: 1) $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.

Other examples: 2) $L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$, where χ is a (primitive) Dirichlet character, and

One wishes to understand the behaviour of some numbers a_n (n = 1, 2, 3...) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function D(s) and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_n .

Most basic example: 1) $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.

Other examples: 2) $L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$, where χ is a (primitive) Dirichlet character, and

3) $L(s, f) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$, where f is a modular or Maass form.

One wishes to understand the behaviour of some numbers a_n (n = 1, 2, 3...) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function D(s) and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_n .

Most basic example: 1) $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.

Other examples: 2) $L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$, where χ is a (primitive) Dirichlet character, and

3) $L(s, f) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$, where f is a modular or Maass form.

All of these are examples of what are known as unitary automorphic *L*-functions.

Abstracting out the analytic properties Let F(s) be a nonzero meromorphic function on \mathbb{C} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let F(s) be a nonzero meromorphic function on \mathbb{C} . (P1) For Re(s) > 1, F(s) is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$.

- Let F(s) be a nonzero meromorphic function on \mathbb{C} .
- (P1) For Re(s) > 1, F(s) is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$.
- (P2) There exists an integer $m \ge 0$ such that $(s-1)^m F(s)$ extends to an entire function of finite order.

- Let F(s) be a nonzero meromorphic function on \mathbb{C} .
- (P1) For Re(s) > 1, F(s) is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$.
- (P2) There exists an integer $m \ge 0$ such that $(s-1)^m F(s)$ extends to an entire function of finite order.
- (P3) There exist a real number Q > 0, a complex number ω such that $|\omega| = 1$, and a function G(s) of the form

$$G(s) = \prod_{j=1}^{r} \Gamma(\lambda_j s + \mu_j), \qquad (1)$$

where $\lambda_j > 0$ and $\mu_j \in \mathbb{C}$, such that

$$\Phi(s) := Q^s G(s) F(s) = \omega \overline{\Phi(1-\bar{s})}.$$
 (2)

- Let F(s) be a nonzero meromorphic function on \mathbb{C} .
- (P1) For Re(s) > 1, F(s) is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$.
- (P2) There exists an integer $m \ge 0$ such that $(s-1)^m F(s)$ extends to an entire function of finite order.
- (P3) There exist a real number Q > 0, a complex number ω such that $|\omega| = 1$, and a function G(s) of the form

$$G(s) = \prod_{j=1}^{r} \Gamma(\lambda_j s + \mu_j), \qquad (1)$$

where $\lambda_j > 0$ and $\mu_j \in \mathbb{C}$, such that

$$\Phi(s) := Q^s G(s) F(s) = \omega \overline{\Phi(1-\bar{s})}.$$
 (2)

(P4) The function F(s) can be expressed as a product $F(s) = \prod_{p} F_{p}(s)$, where $\log F_{p}(s) = \sum_{k=1}^{\infty} \frac{b_{p^{k}}}{p^{ks}}$ with $|b_{p^{k}}| \leq Cp^{k\theta}$ for some $\theta < 1/2$ and some constant C > 0.

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s) > 1$ [(P1)]. It is known that $(s-1)\zeta(s)$ is entire[(P2) with m=0] and that it satisfies the functional equation

$$Z(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s) = Z(1-s)$$

[(P3) with $G(s) = \Gamma(s/2)$]. Further, (P4) is satisfied with $b_p = 1$ and $b_{p^k} = 0$ for k > 1.

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s) > 1$ [(P1)]. It is known that $(s-1)\zeta(s)$ is entire[(P2) with m=0] and that it satisfies the functional equation

$$Z(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s) = Z(1-s)$$

[(P3) with $G(s) = \Gamma(s/2)$]. Further, (P4) is satisfied with $b_p = 1$ and $b_{p^k} = 0$ for k > 1.

Let Δ denote the Ramanujan cusp form of weight 12. More explicitly, we recall that the $\tau\text{-function}$ is defined by

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s) > 1$ [(P1)]. It is known that $(s-1)\zeta(s)$ is entire[(P2) with m=0] and that it satisfies the functional equation

$$Z(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s) = Z(1-s)$$

[(P3) with $G(s) = \Gamma(s/2)$]. Further, (P4) is satisfied with $b_p = 1$ and $b_{p^k} = 0$ for k > 1.

Let Δ denote the Ramanujan cusp form of weight 12. More explicitly, we recall that the $\tau\text{-function}$ is defined by

$$\sum_{n=1}^{\infty} \tau(n) q^n = q \prod_{m=1}^{\infty} (1-q^m)^{24}$$

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s) > 1$ [(P1)]. It is known that $(s-1)\zeta(s)$ is entire[(P2) with m=0] and that it satisfies the functional equation

$$Z(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s) = Z(1-s)$$

[(P3) with $G(s) = \Gamma(s/2)$]. Further, (P4) is satisfied with $b_p = 1$ and $b_{p^k} = 0$ for k > 1.

Let Δ denote the Ramanujan cusp form of weight 12. More explicitly, we recall that the $\tau\text{-function}$ is defined by

$$\sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{m=1}^{\infty} (1-q^m)^{24}.$$

The series $L(s, \Delta) = \sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s+11/2}}$ satisfies (P1), (P2) (with m = 0), (P3) with $G(s) = \Gamma(s + 11/2)$ and also (P4)

Selberg originally defined the class S as the class of series satisfying (P1)-(P4) with $\mu_j \ge 0$ for all $1 \le j \le r$.

Selberg originally defined the class S as the class of series satisfying (P1)-(P4) with $\mu_j \ge 0$ for all $1 \le j \le r$.

His idea was to provide a purely analytic framework for many questions in number theory arising from the Langlands programme. He formulated conjectures for S which (have been shown to) imply the famous Artin conjecture for *L*-series as well as some of Langlands' conjectures (e.g., on solvable base change)

Selberg originally defined the class S as the class of series satisfying (P1)-(P4) with $\mu_j \ge 0$ for all $1 \le j \le r$.

His idea was to provide a purely analytic framework for many questions in number theory arising from the Langlands programme. He formulated conjectures for S which (have been shown to) imply the famous Artin conjecture for *L*-series as well as some of Langlands' conjectures (e.g., on solvable base change)

Kaczorowski and Perelli defined $S^{\#}$ as the class of series satisfying (P1)-(P3) with $\mu_j \ge 0$ for all $1 \le j \le r$, and have proved a number of important theorems.

Selberg originally defined the class S as the class of series satisfying (P1)-(P4) with $\mu_j \ge 0$ for all $1 \le j \le r$.

His idea was to provide a purely analytic framework for many questions in number theory arising from the Langlands programme. He formulated conjectures for S which (have been shown to) imply the famous Artin conjecture for *L*-series as well as some of Langlands' conjectures (e.g., on solvable base change)

Kaczorowski and Perelli defined $S^{\#}$ as the class of series satisfying (P1)-(P3) with $\mu_j \ge 0$ for all $1 \le j \le r$, and have proved a number of important theorems.

Problem: Very few unitary automorphic *L*-functions are known to satisfy the condition with $\mu_j \ge 0$. Showing this, is equivalent to showing the Generalised Ramanujan Conjectures at infinity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We define two larger classes:

We define two larger classes:

Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_j/\lambda_j \geq -1/2$ for all

 $1 \leq j \leq r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).

We define two larger classes:

Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_j/\lambda_j \ge -1/2$ for all $1 \le j \le r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).

Advantage: All generic unitary automorphic *L*-functions (of GL_n) are known to be in \mathcal{G} . Moreover, the 1/2 that appears above is the analogue of the 1/2 that appears in (P4). This is the Jacquet-Shalika bound.

We define two larger classes:

Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_j/\lambda_j \ge -1/2$ for all $1 \le j \le r$, and \mathcal{G} to be the class of series in \mathcal{G} satisfying (P4).

Advantage: All generic unitary automorphic *L*-functions (of GL_n) are known to be in \mathcal{G} . Moreover, the 1/2 that appears above is the analogue of the 1/2 that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the μ_j).

We define two larger classes:

Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_j/\lambda_j \ge -1/2$ for all $1 \le j \le r$, and \mathcal{G} to be the class of series in \mathcal{G} satisfying (P4).

Advantage: All generic unitary automorphic *L*-functions (of GL_n) are known to be in \mathcal{G} . Moreover, the 1/2 that appears above is the analogue of the 1/2 that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the μ_j).

Advantage: All unitary automorphic L-functions lie in \mathcal{L} .

We define two larger classes:

Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_j/\lambda_j \ge -1/2$ for all $1 \le j \le r$, and \mathcal{G} to be the class of series in \mathcal{G} satisfying (P4).

Advantage: All generic unitary automorphic *L*-functions (of GL_n) are known to be in \mathcal{G} . Moreover, the 1/2 that appears above is the analogue of the 1/2 that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the μ_j).

Advantage: All unitary automorphic *L*-functions lie in \mathcal{L} .

Thus any theorem proved in $\mathcal{L}^{\#}$ (resp. $\mathcal{G}^{\#}$) is valid for all (resp. all generic) unitary automorphic *L*-functions.

We define two larger classes:

Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_j/\lambda_j \ge -1/2$ for all $1 \le j \le r$, and \mathcal{G} to be the class of series in \mathcal{G} satisfying (P4).

Advantage: All generic unitary automorphic *L*-functions (of GL_n) are known to be in \mathcal{G} . Moreover, the 1/2 that appears above is the analogue of the 1/2 that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the μ_j).

Advantage: All unitary automorphic L-functions lie in \mathcal{L} .

Thus any theorem proved in $\mathcal{L}^{\#}$ (resp. $\mathcal{G}^{\#}$) is valid for all (resp. all generic) unitary automorphic *L*-functions.

More: The theorems will also be valid for series that arise as factors of unitary automorphic *L*-functons.

Basic Question: Can the (many) interesting results already proved for the classes S and $S^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Question: Can the (many) interesting results already proved for the classes S and $S^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).

Basic Question: Can the (many) interesting results already proved for the classes S and $S^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).

For $F \in \mathcal{L}^{\#}$, define the degree $d_F = 2 \sum_{j=1}^{r} \lambda_j$. Notice that F(s) could satisfy more than one functional equation. Nevertheless, we have

Basic Question: Can the (many) interesting results already proved for the classes S and $S^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).

For $F \in \mathcal{L}^{\#}$, define the degree $d_F = 2 \sum_{j=1}^r \lambda_j$. Notice that F(s) could satisfy more than one functional equation. Nevertheless, we have

Proposition

The degree d_F is well defined.

Basic Question: Can the (many) interesting results already proved for the classes S and $S^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).

For $F \in \mathcal{L}^{\#}$, define the degree $d_F = 2 \sum_{j=1}^r \lambda_j$. Notice that F(s) could satisfy more than one functional equation. Nevertheless, we have

(日) (同) (三) (三) (三) (○) (○)

Proposition

The degree d_F is well defined.

In $\mathcal{G}^{\#}$ we can do better.

Basic Question: Can the (many) interesting results already proved for the classes S and $S^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).

For $F \in \mathcal{L}^{\#}$, define the degree $d_F = 2 \sum_{j=1}^r \lambda_j$. Notice that F(s) could satisfy more than one functional equation. Nevertheless, we have

Proposition

The degree d_F is well defined.

In $\mathcal{G}^{\#}$ we can do better.

Theorem

If F(s) lies in $\mathcal{G}^{\#}$ and satisfies two different functional equations for factors $G_1(s)$ and $G_2(s)$, then $G_1(s) = cG_2(s)$ for some $c \in \mathbb{C}$. The proofs of the above statements are variations on the arguments made in S and $S^{\#}$ by Conrey-Ghosh (C-G) and Kaczorowski-Perelli (K-P)

We first state the degree conjecture:

・ロト・日本・モト・モート ヨー うへで

We first state the degree conjecture:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conjecture

For any $F \in \mathcal{L}^{\#}$, $d_F \in \mathbb{Z}_{\geq 0}$.

We first state the degree conjecture:

Conjecture

For any $F \in \mathcal{L}^{\#}$, $d_F \in \mathbb{Z}_{\geq 0}$.

We remark that $\mathcal{L}_0^\#=\mathcal{S}_0^\#.$ Thus by a theorem of K-P for $\mathcal{S}_0^\#,$ we have

Theorem

The only elements of $\mathcal{L}_0^{\#}$ are Dirichlet polynomials, i.e., series of the form $\sum_{n \mid q} \frac{a_n}{q^s}$. Further, $\mathcal{L}_0 = \{1\}$.

We first state the degree conjecture:

Conjecture

For any $F \in \mathcal{L}^{\#}$, $d_F \in \mathbb{Z}_{\geq 0}$.

We remark that $\mathcal{L}_0^\#=\mathcal{S}_0^\#.$ Thus by a theorem of K-P for $\mathcal{S}_0^\#,$ we have

Theorem

The only elements of $\mathcal{L}_0^{\#}$ are Dirichlet polynomials, i.e., series of the form $\sum_{n \mid q} \frac{a_n}{q^s}$. Further, $\mathcal{L}_0 = \{1\}$.

We also have

Theorem If 0 < d < 1, $\mathcal{L}_d^{\#} = \emptyset$.

We first state the degree conjecture:

Conjecture

For any $F \in \mathcal{L}^{\#}$, $d_F \in \mathbb{Z}_{\geq 0}$.

We remark that $\mathcal{L}_0^\#=\mathcal{S}_0^\#.$ Thus by a theorem of K-P for $\mathcal{S}_0^\#,$ we have

Theorem

The only elements of $\mathcal{L}_0^{\#}$ are Dirichlet polynomials, i.e., series of the form $\sum_{n \mid q} \frac{a_n}{q^s}$. Further, $\mathcal{L}_0 = \{1\}$.

We also have

Theorem

If
$$0 < d < 1$$
, $\mathcal{L}_d^\# = \emptyset$.

The proof of the theorem above, is an easy modification of arguments of Richert and C-G made for S.

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F = F_1F_2$ in $\mathcal{L}^{\#}$ implies that either F_1 or F_2 is a unit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F = F_1F_2$ in $\mathcal{L}^{\#}$ implies that either F_1 or F_2 is a unit.

An easy consequence of the previous theorems (notice that $d_{F_1F_2}=d_{F_1}+d_{F_2})$ is

Theorem

Every element in $\mathcal{L}^{\#}$ factors into a product of primitive elements.

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F = F_1F_2$ in $\mathcal{L}^{\#}$ implies that either F_1 or F_2 is a unit.

An easy consequence of the previous theorems (notice that $d_{F_1F_2}=d_{F_1}+d_{F_2}$) is

Theorem

Every element in $\mathcal{L}^{\#}$ factors into a product of primitive elements.

Conjecture

(Selberg) Unique factorization into primitives holds in the class S.

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F = F_1F_2$ in $\mathcal{L}^{\#}$ implies that either F_1 or F_2 is a unit.

An easy consequence of the previous theorems (notice that $d_{F_1F_2}=d_{F_1}+d_{F_2})$ is

Theorem

Every element in $\mathcal{L}^{\#}$ factors into a product of primitive elements.

Conjecture

(Selberg) Unique factorization into primitives holds in the class S. Of course, one can conjecture the same for the class \mathcal{L} .

The case $d_F = 1$

Theorem

Let F be in $\mathcal{L}^{\#}$ and $d_F = 1$. Then (upto factors of degree 0), F(s) is a linear combination of L-functions of the form $L(s + it, \chi)$.

This theorem was proved by K-P for $S^{\#}$ (Acta Mathematica, 1999). Soundararajan gave a very short and elementary proof in 2005. I am able to modify Soundararajan's proof to get the result for $\mathcal{L}^{\#}$.

The case $d_F = 1$

Theorem

Let F be in $\mathcal{L}^{\#}$ and $d_F = 1$. Then (upto factors of degree 0), F(s) is a linear combination of L-functions of the form $L(s + it, \chi)$.

This theorem was proved by K-P for $S^{\#}$ (Acta Mathematica, 1999). Soundararajan gave a very short and elementary proof in 2005. I am able to modify Soundararajan's proof to get the result for $\mathcal{L}^{\#}$.

Let $L(s, \pi)$ be the *L*-function associated to a modular or Maass cuspidal eigenform (e.g. $L(s, \Delta)$). (fancier terminology: let π be a cuspidal automorphic reprentation of GL_2/\mathbb{Q})

Corollary

The function $L(s, \pi)$ is primitive in \mathcal{L} .

The case $d_F = 1$

Theorem

Let F be in $\mathcal{L}^{\#}$ and $d_F = 1$. Then (upto factors of degree 0), F(s) is a linear combination of L-functions of the form $L(s + it, \chi)$.

This theorem was proved by K-P for $S^{\#}$ (Acta Mathematica, 1999). Soundararajan gave a very short and elementary proof in 2005. I am able to modify Soundararajan's proof to get the result for $\mathcal{L}^{\#}$.

Let $L(s, \pi)$ be the *L*-function associated to a modular or Maass cuspidal eigenform (e.g. $L(s, \Delta)$). (fancier terminology: let π be a cuspidal automorphic reprentation of GL_2/\mathbb{Q})

Corollary

The function $L(s, \pi)$ is primitive in \mathcal{L} .

Again, the above result has been known for S by the work of (K-P). But all the functions $L(s, \pi)$ are not known to lie in S. They are known to lie in \mathcal{L} though!

The case $1 < d_F < 2$

This is much harder and more interesting. It is joint work with R. Balasubramanian.

The case $1 < d_F < 2$

This is much harder and more interesting. It is joint work with R. Balasubramanian.

Using a technique of Soundarajan we have been able to make some progress. For instance, we can extend the results of K-P from $\mathcal{S}^\#$ to $\mathcal{L}^\#$ to obtain

Theorem

With the previous notation, we have for any $F \in \mathcal{L}^{\#}$,

$$\sum_{n \le T} |a_n|^2 \sim cT$$

for some constant c.

The case $1 < d_F < 2$

This is much harder and more interesting. It is joint work with R. Balasubramanian.

Using a technique of Soundarajan we have been able to make some progress. For instance, we can extend the results of K-P from $\mathcal{S}^\#$ to $\mathcal{L}^\#$ to obtain

Theorem

With the previous notation, we have for any $F \in \mathcal{L}^{\#}$,

$$\sum_{n\leq T} |a_n|^2 \sim cT$$

for some constant c.

The proof here involves a much more serious departure from existing arguments. In particular we need to use the celebrated results of Montgomery and Montgomery-Vaughan on L^2 norms.

Using the theorem above and arguments similar to those of K-P, we can prove

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem If 1 < d < 5/3, $\mathcal{L}_d^{\#} = \emptyset$.

Using the theorem above and arguments similar to those of K-P, we can prove

Theorem

If 1 < d < 5/3, $\mathcal{L}_d^\# = \emptyset$.

We should remark that our method allows for a considerable shortening of the difficult proof of the same result of K-P in $S^{\#}$ (Inventiones, 2002). However, they have gone further and proved (Annals, 2012)

Theorem If 1 < d < 2, $S_d^{\#} = \emptyset$.

Using the theorem above and arguments similar to those of K-P, we can prove

Theorem

If 1 < d < 5/3, $\mathcal{L}_d^\# = \emptyset$.

We should remark that our method allows for a considerable shortening of the difficult proof of the same result of K-P in $S^{\#}$ (Inventiones, 2002). However, they have gone further and proved (Annals, 2012)

Theorem If 1 < d < 2, $S_d^{\#} = \emptyset$.

We believe that our techniques should be good enough to 1) extend their results to $\mathcal{L}^{\#}$ and 2) yield a much shorter and different proof.

Using the theorem above and arguments similar to those of K-P, we can prove

Theorem

If 1 < d < 5/3, $\mathcal{L}_d^\# = \emptyset$.

We should remark that our method allows for a considerable shortening of the difficult proof of the same result of K-P in $S^{\#}$ (Inventiones, 2002). However, they have gone further and proved (Annals, 2012)

Theorem If 1 < d < 2, $S_d^{\#} = \emptyset$.

We believe that our techniques should be good enough to 1) extend their results to $\mathcal{L}^{\#}$ and 2) yield a much shorter and different proof.

This is work in progress.