On the Large Selberg Class

Ravi Raghunathan
Indian Institute of Technology Bombay
IIT Bombay Diamond Jubilee Conference January 05, 2019

Introduction

Beyond the Selberg class

The basic results

Dirichlet series

One wishes to understand the behaviour of some numbers a_{n} ($n=1,2,3 \ldots$) that arise naturally in some context in number theory, analysis or geometry.

Dirichlet series

One wishes to understand the behaviour of some numbers a_{n} ($n=1,2,3 \ldots$) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function $D(s)$ and vice-versa.

Dirichlet series

One wishes to understand the behaviour of some numbers a_{n} ($n=1,2,3 \ldots$) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function $D(s)$ and vice-versa.
Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_{n}.

Dirichlet series

One wishes to understand the behaviour of some numbers a_{n} ($n=1,2,3 \ldots$) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function $D(s)$ and vice-versa.
Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_{n}.
Most basic example: 1) $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$.

Dirichlet series

One wishes to understand the behaviour of some numbers a_{n} ($n=1,2,3 \ldots$) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function $D(s)$ and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_{n}.
Most basic example: 1) $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$.
Other examples: 2) $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$, where χ is a (primitive) Dirichlet character, and

Dirichlet series

One wishes to understand the behaviour of some numbers a_{n} ($n=1,2,3 \ldots$) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function $D(s)$ and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_{n}.
Most basic example: 1) $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$.
Other examples: 2) $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$, where χ is a (primitive) Dirichlet character, and
3) $L(s, f)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$, where f is a modular or Maass form.

Dirichlet series

One wishes to understand the behaviour of some numbers a_{n} ($n=1,2,3 \ldots$) that arise naturally in some context in number theory, analysis or geometry.

Idea: Form a series $D(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ of one complex variable. The nice properties of the series should be reflected in the nice properties of the (holomorphic) function $D(s)$ and vice-versa.

Main advantage: We can use the tools that complex analysis gives us to analyse the sequence a_{n}.
Most basic example: 1) $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$.
Other examples: 2) $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$, where χ is a (primitive) Dirichlet character, and
3) $L(s, f)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{5}}$, where f is a modular or Maass form.

All of these are examples of what are known as unitary automorphic L-functions.

Abstracting out the analytic properties

Let $F(s)$ be a nonzero meromorphic function on \mathbb{C}.

Abstracting out the analytic properties

Let $F(s)$ be a nonzero meromorphic function on \mathbb{C}.
(P1) For $\operatorname{Re}(s)>1, F(s)$ is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$.

Abstracting out the analytic properties

Let $F(s)$ be a nonzero meromorphic function on \mathbb{C}.
(P1) For $\operatorname{Re}(s)>1, F(s)$ is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$.
(P2) There exists an integer $m \geq 0$ such that $(s-1)^{m} F(s)$ extends to an entire function of finite order.

Abstracting out the analytic properties

Let $F(s)$ be a nonzero meromorphic function on \mathbb{C}.
(P1) For $\operatorname{Re}(s)>1, F(s)$ is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$.
(P2) There exists an integer $m \geq 0$ such that $(s-1)^{m} F(s)$ extends to an entire function of finite order.
(P3) There exist a real number $Q>0$, a complex number ω such that $|\omega|=1$, and a function $G(s)$ of the form

$$
\begin{equation*}
G(s)=\prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right) \tag{1}
\end{equation*}
$$

where $\lambda_{j}>0$ and $\mu_{j} \in \mathbb{C}$, such that

$$
\begin{equation*}
\Phi(s):=Q^{s} G(s) F(s)=\omega \overline{\Phi(1-\bar{s})} . \tag{2}
\end{equation*}
$$

Abstracting out the analytic properties

Let $F(s)$ be a nonzero meromorphic function on \mathbb{C}.
(P1) For $\operatorname{Re}(s)>1, F(s)$ is given by an absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$.
(P2) There exists an integer $m \geq 0$ such that $(s-1)^{m} F(s)$ extends to an entire function of finite order.
(P3) There exist a real number $Q>0$, a complex number ω such that $|\omega|=1$, and a function $G(s)$ of the form

$$
\begin{equation*}
G(s)=\prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right) \tag{1}
\end{equation*}
$$

where $\lambda_{j}>0$ and $\mu_{j} \in \mathbb{C}$, such that

$$
\begin{equation*}
\Phi(s):=Q^{s} G(s) F(s)=\omega \overline{\Phi(1-\bar{s})} . \tag{2}
\end{equation*}
$$

(P4) The function $F(s)$ can be expressed as a product
$F(s)=\prod_{p} F_{p}(s)$, where $\log F_{p}(s)=\sum_{k=1}^{\infty} \frac{b_{p} k}{p^{k s}}$ with
$\left|b_{p^{k}}\right| \leq C p^{k \theta}$ for some $\theta<1 / 2$ and some constant $C>0$.

Examples

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s)>1[(\mathrm{P} 1)]$. It is known that $(s-1) \zeta(s)$ is entire $[(\mathrm{P} 2)$ with $m=0]$ and that it satisfies the functional equation

$$
Z(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=Z(1-s)
$$

$[(P 3)$ with $G(s)=\Gamma(s / 2)]$. Further, (P4) is satisfied with $b_{p}=1$ and $b_{p^{k}}=0$ for $k>1$.

Examples

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s)>1[(\mathrm{P} 1)]$. It is known that $(s-1) \zeta(s)$ is entire[(P2) with $m=0]$ and that it satisfies the functional equation

$$
Z(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=Z(1-s)
$$

$[(\mathrm{P} 3)$ with $G(s)=\Gamma(s / 2)]$. Further, (P4) is satisfied with $b_{p}=1$ and $b_{p^{k}}=0$ for $k>1$.
Let Δ denote the Ramanujan cusp form of weight 12. More explicitly, we recall that the τ-function is defined by

Examples

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s)>1[(\mathrm{P} 1)]$. It is known that $(s-1) \zeta(s)$ is entire[(P2) with $m=0]$ and that it satisfies the functional equation

$$
Z(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=Z(1-s)
$$

$[(\mathrm{P} 3)$ with $G(s)=\Gamma(s / 2)]$. Further, (P4) is satisfied with $b_{p}=1$ and $b_{p^{k}}=0$ for $k>1$.
Let Δ denote the Ramanujan cusp form of weight 12. More explicitly, we recall that the τ-function is defined by

$$
\sum_{n=1}^{\infty} \tau(n) q^{n}=q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}
$$

Examples

1) $\zeta(s)$ converges in the half-plane $\operatorname{Re}(s)>1[(P 1)]$. It is known that $(s-1) \zeta(s)$ is entire $[(\mathrm{P} 2)$ with $m=0]$ and that it satisfies the functional equation

$$
Z(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=Z(1-s)
$$

$[(\mathrm{P} 3)$ with $G(s)=\Gamma(s / 2)]$. Further, (P4) is satisfied with $b_{p}=1$ and $b_{p^{k}}=0$ for $k>1$.
Let Δ denote the Ramanujan cusp form of weight 12. More explicitly, we recall that the τ-function is defined by

$$
\sum_{n=1}^{\infty} \tau(n) q^{n}=q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{24}
$$

The series $L(s, \Delta)=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s+11 / 2}}$ satisfies (P1), (P2) (with $m=0)$, (P3) with $G(s)=\Gamma(s+11 / 2)$ and also (P4)

The Selberg and extended Selberg classes

Selberg originally defined the class \mathcal{S} as the class of series satisfying (P1)-(P4) with $\mu_{j} \geq 0$ for all $1 \leq j \leq r$.

The Selberg and extended Selberg classes

Selberg originally defined the class \mathcal{S} as the class of series satisfying (P1)-(P4) with $\mu_{j} \geq 0$ for all $1 \leq j \leq r$.

His idea was to provide a purely analytic framework for many questions in number theory arising from the Langlands programme. He formulated conjectures for \mathcal{S} which (have been shown to) imply the famous Artin conjecture for L-series as well as some of Langlands' conjectures (e.g., on solvable base change)

The Selberg and extended Selberg classes

Selberg originally defined the class \mathcal{S} as the class of series satisfying (P1)-(P4) with $\mu_{j} \geq 0$ for all $1 \leq j \leq r$.

His idea was to provide a purely analytic framework for many questions in number theory arising from the Langlands programme. He formulated conjectures for \mathcal{S} which (have been shown to) imply the famous Artin conjecture for L-series as well as some of Langlands' conjectures (e.g., on solvable base change)

Kaczorowski and Perelli defined $\mathcal{S}^{\#}$ as the class of series satisfying (P1)-(P3) with $\mu_{j} \geq 0$ for all $1 \leq j \leq r$, and have proved a number of important theorems.

The Selberg and extended Selberg classes

Selberg originally defined the class \mathcal{S} as the class of series satisfying (P1)-(P4) with $\mu_{j} \geq 0$ for all $1 \leq j \leq r$.

His idea was to provide a purely analytic framework for many questions in number theory arising from the Langlands programme. He formulated conjectures for \mathcal{S} which (have been shown to) imply the famous Artin conjecture for L-series as well as some of Langlands' conjectures (e.g., on solvable base change)

Kaczorowski and Perelli defined $\mathcal{S}^{\#}$ as the class of series satisfying (P1)-(P3) with $\mu_{j} \geq 0$ for all $1 \leq j \leq r$, and have proved a number of important theorems.

Problem: Very few unitary automorphic L-functions are known to satisfy the condition with $\mu_{j} \geq 0$. Showing this, is equivalent to showing the Generalised Ramanujan Conjectures at infinity.

The Generalised and Large Selberg classes

We define two larger classes:

The Generalised and Large Selberg classes

We define two larger classes:
Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_{j} / \lambda_{j} \geq-1 / 2$ for all $1 \leq j \leq r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).

The Generalised and Large Selberg classes

We define two larger classes:
Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_{j} / \lambda_{j} \geq-1 / 2$ for all $1 \leq j \leq r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).

Advantage: All generic unitary automorphic L-functions (of $G L_{n}$) are known to be in \mathcal{G}. Moreover, the $1 / 2$ that appears above is the analogue of the $1 / 2$ that appears in (P4). This is the Jacquet-Shalika bound.

The Generalised and Large Selberg classes

We define two larger classes:
Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_{j} / \lambda_{j} \geq-1 / 2$ for all $1 \leq j \leq r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).
Advantage: All generic unitary automorphic L-functions (of $G L_{n}$) are known to be in \mathcal{G}. Moreover, the $1 / 2$ that appears above is the analogue of the $1 / 2$ that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the $\left.\mu_{j}\right)$.

The Generalised and Large Selberg classes

We define two larger classes:
Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_{j} / \lambda_{j} \geq-1 / 2$ for all $1 \leq j \leq r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).
Advantage: All generic unitary automorphic L-functions (of $G L_{n}$) are known to be in \mathcal{G}. Moreover, the $1 / 2$ that appears above is the analogue of the $1 / 2$ that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the $\left.\mu_{j}\right)$.
Advantage: All unitary automorphic L-functions lie in \mathcal{L}.

The Generalised and Large Selberg classes

We define two larger classes:
Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_{j} / \lambda_{j} \geq-1 / 2$ for all $1 \leq j \leq r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).
Advantage: All generic unitary automorphic L-functions (of $G L_{n}$) are known to be in \mathcal{G}. Moreover, the $1 / 2$ that appears above is the analogue of the $1 / 2$ that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the $\left.\mu_{j}\right)$.
Advantage: All unitary automorphic L-functions lie in \mathcal{L}.
Thus any theorem proved in $\mathcal{L}^{\#}$ (resp. $\mathcal{G}^{\#}$) is valid for all (resp. all generic) unitary automorphic L-functions.

The Generalised and Large Selberg classes

We define two larger classes:
Let $\mathcal{G}^{\#}$ be satisfying (P1)-(P3) with $\mu_{j} / \lambda_{j} \geq-1 / 2$ for all $1 \leq j \leq r$, and \mathcal{G} to be the class of series in \mathcal{G} satsifying (P4).
Advantage: All generic unitary automorphic L-functions (of $G L_{n}$) are known to be in \mathcal{G}. Moreover, the $1 / 2$ that appears above is the analogue of the $1 / 2$ that appears in (P4). This is the Jacquet-Shalika bound.

We define $\mathcal{L}^{\#}$ to be the class of series satisfying (P1)-(P3) and \mathcal{L} to be the class of series in $\mathcal{L}^{\#}$ satisfying (P4) (no condition on the $\left.\mu_{j}\right)$.
Advantage: All unitary automorphic L-functions lie in \mathcal{L}.
Thus any theorem proved in $\mathcal{L}^{\#}$ (resp. $\mathcal{G}^{\#}$) is valid for all (resp. all generic) unitary automorphic L-functions.

More: The theorems will also be valid for series that arise as factors of unitary automorphic L-functons.

The degree of an element in $\mathcal{L}^{\#}$

Basic Question: Can the (many) interesting results already proved for the classes \mathcal{S} and $\mathcal{S}^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

The degree of an element in $\mathcal{L}^{\#}$

Basic Question: Can the (many) interesting results already proved for the classes \mathcal{S} and $\mathcal{S}^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).

The degree of an element in $\mathcal{L}^{\#}$

Basic Question: Can the (many) interesting results already proved for the classes \mathcal{S} and $\mathcal{S}^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).
For $F \in \mathcal{L}^{\#}$, define the degree $d_{F}=2 \sum_{j=1}^{r} \lambda_{j}$. Notice that $F(s)$ could satisfy more than one functional equation. Nevertheless, we have

The degree of an element in $\mathcal{L}^{\#}$

Basic Question: Can the (many) interesting results already proved for the classes \mathcal{S} and $\mathcal{S}^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).
For $F \in \mathcal{L}^{\#}$, define the degree $d_{F}=2 \sum_{j=1}^{r} \lambda_{j}$. Notice that $F(s)$ could satisfy more than one functional equation. Nevertheless, we have

Proposition

The degree d_{F} is well defined.

The degree of an element in $\mathcal{L}^{\#}$

Basic Question: Can the (many) interesting results already proved for the classes \mathcal{S} and $\mathcal{S}^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).
For $F \in \mathcal{L}^{\#}$, define the degree $d_{F}=2 \sum_{j=1}^{r} \lambda_{j}$. Notice that $F(s)$ could satisfy more than one functional equation. Nevertheless, we have

Proposition

The degree d_{F} is well defined.
In $\mathcal{G}^{\#}$ we can do better.

The degree of an element in $\mathcal{L}^{\#}$

Basic Question: Can the (many) interesting results already proved for the classes \mathcal{S} and $\mathcal{S}^{\#}$ be proved for \mathcal{L} and $\mathcal{L}^{\#}$.

Basic Answer: Yes, many of them (perhaps all of them).
For $F \in \mathcal{L}^{\#}$, define the degree $d_{F}=2 \sum_{j=1}^{r} \lambda_{j}$. Notice that $F(s)$ could satisfy more than one functional equation. Nevertheless, we have

Proposition

The degree d_{F} is well defined.
In $\mathcal{G}^{\#}$ we can do better.

Theorem

If $F(s)$ lies in $\mathcal{G}^{\#}$ and satisfies two different functional equations for factors $G_{1}(s)$ and $G_{2}(s)$, then $G_{1}(s)=c G_{2}(s)$ for some $c \in \mathbb{C}$.
The proofs of the above statements are variations on the arguments made in \mathcal{S} and $\mathcal{S}^{\#}$ by Conrey-Ghosh (C-G) and Kaczorowski-Perelli (K-P)

Classification in $\mathcal{L}^{\#}$

We first state the degree conjecture:

Classification in $\mathcal{L}^{\#}$

We first state the degree conjecture:
Conjecture
For any $F \in \mathcal{L}^{\#}, d_{F} \in \mathbb{Z}_{\geq 0}$.

Classification in $\mathcal{L}^{\#}$

We first state the degree conjecture:

Conjecture

For any $F \in \mathcal{L}^{\#}, d_{F} \in \mathbb{Z}_{\geq 0}$.
We remark that $\mathcal{L}_{0}^{\#}=\mathcal{S}_{0}^{\#}$. Thus by a theorem of K-P for $\mathcal{S}_{0}^{\#}$, we have

Theorem
The only elements of $\mathcal{L}_{0}^{\#}$ are Dirichlet polynomials, i.e., series of the form $\sum_{n \mid q} \frac{a_{n}}{q^{s}}$. Further, $\mathcal{L}_{0}=\{1\}$.

Classification in $\mathcal{L}^{\#}$

We first state the degree conjecture:

Conjecture

For any $F \in \mathcal{L}^{\#}, d_{F} \in \mathbb{Z}_{\geq 0}$.
We remark that $\mathcal{L}_{0}^{\#}=\mathcal{S}_{0}^{\#}$. Thus by a theorem of K-P for $\mathcal{S}_{0}^{\#}$, we have

Theorem
The only elements of $\mathcal{L}_{0}^{\#}$ are Dirichlet polynomials, i.e., series of the form $\sum_{n \mid q} \frac{a_{n}}{q^{s}}$. Further, $\mathcal{L}_{0}=\{1\}$.

We also have
Theorem
If $0<d<1, \mathcal{L}_{d}^{\#}=\emptyset$.

Classification in $\mathcal{L}^{\#}$

We first state the degree conjecture:

Conjecture

For any $F \in \mathcal{L}^{\#}, d_{F} \in \mathbb{Z}_{\geq 0}$.
We remark that $\mathcal{L}_{0}^{\#}=\mathcal{S}_{0}^{\#}$. Thus by a theorem of K-P for $\mathcal{S}_{0}^{\#}$, we have

Theorem
The only elements of $\mathcal{L}_{0}^{\#}$ are Dirichlet polynomials, i.e., series of the form $\sum_{n \mid q} \frac{a_{n}}{q^{s}}$. Further, $\mathcal{L}_{0}=\{1\}$.

We also have
Theorem
If $0<d<1, \mathcal{L}_{d}^{\#}=\emptyset$.
The proof of the theorem above, is an easy modification of arguments of Richert and C-G made for \mathcal{S}.

Factorisation

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F=F_{1} F_{2}$ in $\mathcal{L}^{\#}$ implies that either F_{1} or F_{2} is a unit.

Factorisation

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F=F_{1} F_{2}$ in $\mathcal{L}^{\#}$ implies that either F_{1} or F_{2} is a unit.

An easy consequence of the previous theorems (notice that $\left.d_{F_{1} F_{2}}=d_{F_{1}}+d_{F_{2}}\right)$ is
Theorem
Every element in $\mathcal{L}^{\#}$ factors into a product of primitive elements.

Factorisation

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F=F_{1} F_{2}$ in $\mathcal{L}^{\#}$ implies that either F_{1} or F_{2} is a unit.

An easy consequence of the previous theorems (notice that $\left.d_{F_{1} F_{2}}=d_{F_{1}}+d_{F_{2}}\right)$ is
Theorem
Every element in $\mathcal{L}^{\#}$ factors into a product of primitive elements.
Conjecture
(Selberg) Unique factorization into primitives holds in the class \mathcal{S}.

Factorisation

Notice that the class $\mathcal{L}^{\#}$ forms a monoid under multiplication of series. An element F in $\mathcal{L}^{\#}$ is said to be primitive if $F=F_{1} F_{2}$ in $\mathcal{L}^{\#}$ implies that either F_{1} or F_{2} is a unit.

An easy consequence of the previous theorems (notice that $\left.d_{F_{1} F_{2}}=d_{F_{1}}+d_{F_{2}}\right)$ is
Theorem
Every element in $\mathcal{L}^{\#}$ factors into a product of primitive elements.

Conjecture

(Selberg) Unique factorization into primitives holds in the class \mathcal{S}. Of course, one can conjecture the same for the class \mathcal{L}.

The case $d_{F}=1$

Theorem

Let F be in $\mathcal{L}^{\#}$ and $d_{F}=1$. Then (upto factors of degree 0), $F(s)$ is a linear combination of L-functions of the form $L(s+i t, \chi)$.
This theorem was proved by K-P for $\mathcal{S} \#$ (Acta Mathematica, 1999). Soundararajan gave a very short and elementary proof in 2005. I am able to modify Soundararajan's proof to get the result for $\mathcal{L}^{\#}$.

The case $d_{F}=1$

Theorem

Let F be in $\mathcal{L}^{\#}$ and $d_{F}=1$. Then (upto factors of degree 0), $F(s)$ is a linear combination of L-functions of the form $L(s+i t, \chi)$.
This theorem was proved by K-P for $\mathcal{S} \#$ (Acta Mathematica, 1999). Soundararajan gave a very short and elementary proof in 2005. I am able to modify Soundararajan's proof to get the result for $\mathcal{L}^{\#}$.

Let $L(s, \pi)$ be the L-function associated to a modular or Maass cuspidal eigenform (e.g. $L(s, \Delta)$). (fancier terminology: let π be a cuspidal automorphic reprentation of $G L_{2} / \mathbb{Q}$)
Corollary
The function $L(s, \pi)$ is primitive in \mathcal{L}.

The case $d_{F}=1$

Theorem

Let F be in $\mathcal{L}^{\#}$ and $d_{F}=1$. Then (upto factors of degree 0), $F(s)$ is a linear combination of L-functions of the form $L(s+i t, \chi)$.
This theorem was proved by K-P for \mathcal{S} \# (Acta Mathematica, 1999). Soundararajan gave a very short and elementary proof in 2005. I am able to modify Soundararajan's proof to get the result for $\mathcal{L}^{\#}$.

Let $L(s, \pi)$ be the L-function associated to a modular or Maass cuspidal eigenform (e.g. $L(s, \Delta)$). (fancier terminology: let π be a cuspidal automorphic reprentation of $G L_{2} / \mathbb{Q}$)

Corollary

The function $L(s, \pi)$ is primitive in \mathcal{L}.
Again, the above result has been known for \mathcal{S} by the work of (K-P). But all the functions $L(s, \pi)$ are not known to lie in \mathcal{S}.
They are known to lie in \mathcal{L} though!

The case $1<d_{F}<2$

This is much harder and more interesting. It is joint work with R. Balasubramanian.

The case $1<d_{F}<2$

This is much harder and more interesting. It is joint work with R. Balasubramanian.

Using a technique of Soundarajan we have been able to make some progress. For instance, we can extend the results of K-P from $\mathcal{S}^{\#}$ to $\mathcal{L}^{\#}$ to obtain

Theorem
With the previous notation, we have for any $F \in \mathcal{L}^{\#}$,

$$
\sum_{n \leq T}\left|a_{n}\right|^{2} \sim c T
$$

for some constant c.

The case $1<d_{F}<2$

This is much harder and more interesting. It is joint work with R. Balasubramanian.

Using a technique of Soundarajan we have been able to make some progress. For instance, we can extend the results of K-P from $\mathcal{S}^{\#}$ to $\mathcal{L}^{\#}$ to obtain
Theorem
With the previous notation, we have for any $F \in \mathcal{L}^{\#}$,

$$
\sum_{n \leq T}\left|a_{n}\right|^{2} \sim c T
$$

for some constant c.
The proof here involves a much more serious departure from existing arguments. In particular we need to use the celebrated results of Montgomery and Montgomery-Vaughan on L^{2} norms.

Coda

Using the theorem above and arguments similar to those of K-P, we can prove

Theorem
If $1<d<5 / 3, \mathcal{L}_{d}^{\#}=\emptyset$.

Coda

Using the theorem above and arguments similar to those of K-P, we can prove

Theorem
If $1<d<5 / 3, \mathcal{L}_{d}^{\#}=\emptyset$.
We should remark that our method allows for a considerable shortening of the difficult proof of the same result of K-P in $\mathcal{S}^{\#}$ (Inventiones, 2002). However, they have gone further and proved (Annals, 2012)

Theorem
If $1<d<2, \mathcal{S}_{d}^{\#}=\emptyset$.

Coda

Using the theorem above and arguments similar to those of K-P, we can prove
Theorem
If $1<d<5 / 3, \mathcal{L}_{d}^{\#}=\emptyset$.
We should remark that our method allows for a considerable shortening of the difficult proof of the same result of K-P in $\mathcal{S}^{\#}$ (Inventiones, 2002). However, they have gone further and proved (Annals, 2012)
Theorem
If $1<d<2, \mathcal{S}_{d}^{\#}=\emptyset$.
We believe that our techniques should be good enough to 1) extend their results to $\mathcal{L}^{\#}$ and 2) yield a much shorter and different proof.

Coda

Using the theorem above and arguments similar to those of K-P, we can prove
Theorem
If $1<d<5 / 3, \mathcal{L}_{d}^{\#}=\emptyset$.
We should remark that our method allows for a considerable shortening of the difficult proof of the same result of K-P in $\mathcal{S}^{\#}$ (Inventiones, 2002). However, they have gone further and proved (Annals, 2012)
Theorem
If $1<d<2, \mathcal{S}_{d}^{\#}=\emptyset$.
We believe that our techniques should be good enough to 1) extend their results to $\mathcal{L}^{\#}$ and 2) yield a much shorter and different proof.

This is work in progress.

