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Introduction

Beyond the Selberg class

The basic results



Dirichlet series

One wishes to understand the behaviour of some numbers an
(n = 1, 2, 3 . . .) that arise naturally in some context in number
theory, analysis or geometry.

Idea: Form a series D(s) =
∑∞

n=1
an
ns of one complex variable. The

nice properties of the series should be reflected in the nice
properties of the (holomorphic) function D(s) and vice-versa.

Main advantage: We can use the tools that complex analysis gives
us to analyse the sequence an.

Most basic example: 1) ζ(s) =
∑∞

n=1
1
ns .

Other examples: 2) L(s, χ) =
∑∞

n=1
χ(n)
ns , where χ is a (primitive)

Dirichlet character, and

3) L(s, f ) =
∑∞

n=1
an
ns , where f is a modular or Maass form.

All of these are examples of what are known as unitary
automorphic L-functions.
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Abstracting out the analytic properties
Let F (s) be a nonzero meromorphic function on C.

(P1) For Re(s) > 1, F (s) is given by an absolutely convergent
Dirichlet series

∑∞
n=1

an
ns .

(P2) There exists an integer m ≥ 0 such that (s − 1)mF (s) extends
to an entire function of finite order.

(P3) There exist a real number Q > 0, a complex number ω such
that |ω| = 1, and a function G (s) of the form

G (s) =
r∏

j=1

Γ(λjs + µj), (1)

where λj > 0 and µj ∈ C, such that

Φ(s) := QsG (s)F (s) = ωΦ(1− s̄). (2)

(P4) The function F (s) can be expressed as a product

F (s) =
∏

p Fp(s), where log Fp(s) =
∑∞

k=1

b
pk

pks
with

|bpk | ≤ Cpkθ for some θ < 1/2 and some constant C > 0.
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Examples

1) ζ(s) converges in the half-plane Re(s) > 1 [(P1)]. It is known
that (s − 1)ζ(s) is entire[(P2) with m = 0] and that it satisfies the
functional equation

Z (s) = π−s/2Γ(s/2)ζ(s) = Z (1− s)

[(P3) with G (s) = Γ(s/2)]. Further, (P4) is satisfied withbp = 1
and bpk = 0 for k > 1.

Let ∆ denote the Ramanujan cusp form of weight 12. More
explicitly, we recall that the τ -function is defined by

∞∑
n=1

τ(n)qn = q
∞∏

m=1

(1− qm)24.

The series L(s,∆) =
∑∞

n=1
τ(n)

ns+11/2 satisfies (P1), (P2) (with

m = 0), (P3) with G (s) = Γ(s + 11/2) and also (P4)
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The Selberg and extended Selberg classes

Selberg originally defined the class S as the class of series
satisfying (P1)-(P4) with µj ≥ 0 for all 1 ≤ j ≤ r .

His idea was to provide a purely analytic framework for many
questions in number theory arising from the Langlands programme.
He formulated conjectures for S which (have been shown to) imply
the famous Artin conjecture for L-series as well as some of
Langlands’ conjectures (e.g., on solvable base change)

Kaczorowski and Perelli defined S# as the class of series satisfying
(P1)-(P3) with µj ≥ 0 for all 1 ≤ j ≤ r , and have proved a number
of important theorems.

Problem: Very few unitary automorphic L-functions are known to
satisfy the condition with µj ≥ 0. Showing this, is equivalent to
showing the Generalised Ramanujan Conjectures at infinity.
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The Generalised and Large Selberg classes
We define two larger classes:

Let G# be satisfying (P1)-(P3) with µj/λj ≥ −1/2 for all
1 ≤ j ≤ r , and G to be the class of series in G satsifying (P4).

Advantage: All generic unitary automorphic L-functions (of GLn)
are known to be in G. Moreover, the 1/2 that appears above is the
analogue of the 1/2 that appears in (P4). This is the
Jacquet-Shalika bound.

We define L# to be the class of series satisfying (P1)-(P3) and L
to be the class of series in L# satisfying (P4) (no condition on the
µj).

Advantage: All unitary automorphic L-functions lie in L.

Thus any theorem proved in L# (resp. G#) is valid for all (resp.
all generic) unitary automorphic L-functions.

More: The theorems will also be valid for series that arise as
factors of unitary automorphic L-functons.
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The degree of an element in L#

Basic Question: Can the (many) interesting results already proved
for the classes S and S# be proved for L and L#.

Basic Answer: Yes, many of them (perhaps all of them).

For F ∈ L#, define the degree dF = 2
∑r

j=1 λj . Notice that F (s)
could satisfy more than one functional equation. Nevertheless, we
have

Proposition

The degree dF is well defined.

In G# we can do better.

Theorem
If F (s) lies in G# and satisfies two different functional equations
for factors G1(s) and G2(s), then G1(s) = cG2(s) for some c ∈ C.

The proofs of the above statements are variations on the
arguments made in S and S# by Conrey-Ghosh (C-G) and
Kaczorowski-Perelli (K-P)
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for factors G1(s) and G2(s), then G1(s) = cG2(s) for some c ∈ C.

The proofs of the above statements are variations on the
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Classification in L#

We first state the degree conjecture:

Conjecture

For any F ∈ L#, dF ∈ Z≥0.

We remark that L#0 = S#0 . Thus by a theorem of K-P for S#0 , we
have

Theorem
The only elements of L#0 are Dirichlet polynomials, i.e., series of
the form

∑
n | q

an
qs . Further, L0 = {1}.

We also have

Theorem
If 0 < d < 1, L#d = ∅.
The proof of the theorem above, is an easy modification of
arguments of Richert and C-G made for S.
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Factorisation

Notice that the class L# forms a monoid under multiplication of
series. An element F in L# is said to be primitive if F = F1F2 in
L# implies that either F1 or F2 is a unit.

An easy consequence of the previous theorems (notice that
dF1F2 = dF1 + dF2) is

Theorem
Every element in L# factors into a product of primitive elements.

Conjecture

(Selberg) Unique factorization into primitives holds in the class S.

Of course, one can conjecture the same for the class L.
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The case dF = 1

Theorem
Let F be in L# and dF = 1. Then (upto factors of degree 0), F (s)
is a linear combination of L-functions of the form L(s + it, χ).

This theorem was proved by K-P for S# (Acta Mathematica,
1999). Soundararajan gave a very short and elementary proof in
2005. I am able to modify Soundararajan’s proof to get the result
for L#.

Let L(s, π) be the L-function associated to a modular or Maass
cuspidal eigenform (e.g. L(s,∆)). (fancier terminology: let π be a
cuspidal automorphic reprentation of GL2/Q)

Corollary

The function L(s, π) is primitive in L.

Again, the above result has been known for S by the work of
(K-P). But all the functions L(s, π) are not known to lie in S.
They are known to lie in L though!
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The case 1 < dF < 2

This is much harder and more interesting. It is joint work with R.
Balasubramanian.

Using a technique of Soundarajan we have been able to make some
progress. For instance, we can extend the results of K-P from S#
to L# to obtain

Theorem
With the previous notation, we have for any F ∈ L#,∑

n≤T
|an|2 ∼ cT

for some constant c .

The proof here involves a much more serious departure from
existing arguments. In particular we need to use the celebrated
results of Montgomery and Montgomery-Vaughan on L2 norms.
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Coda

Using the theorem above and arguments similar to those of K-P,
we can prove

Theorem
If 1 < d < 5/3, L#d = ∅.

We should remark that our method allows for a considerable
shortening of the difficult proof of the same result of K-P in S#
(Inventiones, 2002). However, they have gone further and proved
(Annals, 2012)

Theorem
If 1 < d < 2, S#d = ∅.

We believe that our techniques should be good enough to 1)
extend their results to L# and 2) yield a much shorter and
different proof.

This is work in progress.
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